COVID-19: Wastewater monitoring dashboard

This dashboard provides trend data about the levels of COVID-19 in the wastewater (sewage) of different communities and settings across Canada. This can reflect the levels of COVID-19 in those communities.

Last updated: 2023-09-19 PDF

About the dashboard

Wastewater dashboard

Technical notes

We’re working with our partners across Canada as part of a pan-Canadian wastewater monitoring network to determine the spread of COVID-19. Our partners include municipal, provincial and territorial governments, as well as other federal departments and academia.

The wastewater dashboard allows you to track and compare the COVID-19 levels in some major communities in Canada over time. Data are presented as a 7-day rolling average.

The data presented here comes from sewage samples submitted for testing to the National Microbiology Laboratory or a participating partner laboratory.

Some communities are monitoring their wastewater for COVID-19 and publishing their own data. A list of other Canadian wastewater COVID-19 monitoring dashboards and websites is available.

Why we monitor wastewater

SARS-CoV-2, the virus that causes COVID-19, is in the stool (feces) of people while they are infected. Genetic fragments of the virus can be detected in the community wastewater (sewage). By monitoring wastewater we can:

- monitor COVID-19 in communities
- detect COVID-19 in institutional settings such as long-term care facilities
- track which variants are circulating
monitor other public health threats, including other infectious diseases and trends in antimicrobial resistance

Because people can have COVID-19 without any symptoms, they can sometimes spread it without even knowing they have it. Wastewater monitoring can provide an early warning of COVID-19 in a community or setting. Even a few days of early warning can be critical to the success of public health interventions. It can also be an important source of information for people making their own personal health decisions.

Acknowledgements

We thank participating municipalities for submitting wastewater samples and associated data. We also thank federal, provincial and territorial public health professionals for valued input on the development of this program, as well as the many scientists supporting wastewater monitoring networks nationally.

Canadian Wastewater Survey (CWS)

We’ve been working with Statistics Canada on the Canadian Wastewater Survey (CWS) since March 2020 to conduct wastewater monitoring in Halifax, Montréal, Toronto, Edmonton, and Vancouver.

For more information on the CWS please refer to:

- Canadian Wastewater Survey (CWS)
- Canadian Wastewater Survey (detailed)

Manitoba

We work with the cities of Brandon and Winnipeg and the province of Manitoba to conduct wastewater monitoring in 4 wastewater treatment plants.

New Brunswick

We work with the cities of Bathurst, Campbellton, Fredericton, Miramichi, Moncton and Saint John as well as the province of New Brunswick to conduct wastewater monitoring in 4 wastewater treatment plants and a wastewater treatment lagoon.

Wastewater monitoring data at Saint John and Edmundston is provided by VitalitéNB.
Newfoundland and Labrador
We work with the Government of Newfoundland and Labrador to conduct COVID-19 wastewater monitoring in St. John’s wastewater treatment plant.

Nova Scotia
We work with the towns of Trenton, Bridgewater, and Yarmouth, the communities of Battery Point, Central Colchester, and Dominion-Bridgeport, and the province of Nova Scotia to conduct wastewater monitoring in 6 wastewater treatment plants.

Prince Edward Island
We work with the cities of Charlottetown and Summerside, the towns of Alberton, Souris, and Stratford, the community of Montague, and the province of Prince Edward Island to conduct wastewater monitoring at 4 wastewater treatment plants and a wastewater treatment lagoon.

Saskatchewan
We work with the City of Regina, the Saskatchewan Health Authority, the University of Regina, and EPCOR Water Prairies to conduct COVID-19 wastewater monitoring at Regina’s wastewater treatment plant.

As of June 1, 2023, Saskatchewan Health Authority (SHA) has taken over wastewater monitoring from the University of Saskatchewan at 3 wastewater treatment plants (Saskatoon, Prince Albert, and North Battleford). SHA also works with various cities, towns, villages and communities to conduct wastewater monitoring across the province. These include the cities of Estevan, Meadow Lake, Melville, Moose Jaw, Swift Current, Weyburn and Yorkton, the towns of Assiniboia, Battleford, Birch Hills, Canora, Lumsden, Maple Creek, Southey, Unity, the village of Île-à-la-Crosse, and the communities of La Ronge and Pasqua.

Yukon
We work with the Government of Champagne and Aishihik First Nations and the village of Haines Junction to conduct wastewater monitoring at a lift station in Haines Junction.
COVID-19: Wastewater monitoring dashboard

This dashboard provides trend data about the levels of COVID-19 in the wastewater (sewage) of different communities and settings across Canada. This can reflect the levels of COVID-19 in those communities.

Last updated: 2023-10-03

About the dashboard

Wastewater dashboard

Technical notes

We update this information on Tuesdays and Fridays at 12:00 noon Eastern Time. In the event of a holiday, we update on the next business day. Data at some sites may lag slightly, due to the time it takes to transport and analyze samples. This report was last updated on October 3, 2023 with data up to and including September 25, 2023.

On this page

- National overview
- Interpreting wastewater data
- Canadian wastewater COVID-19 monitoring dashboards and websites
- Download the data

Key updates

- Number of sites showing an increase: 25
- Number of sites showing no change: 33
- Number of sites showing a decrease: 2
An increase is a statistically significant increase in the wastewater signal.

No change is either a steady signal or an insignificant decrease in the wastewater signal.

A decrease is a statistically significant decrease in the wastewater signal.

National overview

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>33</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(41.67%)</td>
<td>(55.00%)</td>
<td>(3.33%)</td>
<td></td>
</tr>
</tbody>
</table>

Current COVID-19 signal level compared to historical data collected since December 1, 2022

<table>
<thead>
<tr>
<th>Signal Level</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>1</td>
<td>1.67%</td>
</tr>
<tr>
<td>Moderate</td>
<td>8</td>
<td>13.33%</td>
</tr>
<tr>
<td>Low</td>
<td>14</td>
<td>23.33%</td>
</tr>
</tbody>
</table>

New sites (Testing for these sites started after December 1, 2022, which doesn't cover the entire post-Omicron period, normally used to establish cutoff values.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>(61.67%)</td>
</tr>
</tbody>
</table>
In **Canada**, **60** sites currently submit sewage samples for processing, representing **49.58%** of the Canadian population. Of those sites, **25** showed an increase, **2** showed a decrease and **33** showed no change as of September 25, 2023.

<table>
<thead>
<tr>
<th>Site</th>
<th>Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberton</td>
<td>New site</td>
<td></td>
</tr>
<tr>
<td>Assiniboia</td>
<td>New site</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>Level</td>
<td>Trend</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>Bathurst</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Battery Point</td>
<td>New site</td>
<td>↑</td>
</tr>
<tr>
<td>Battleford</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Birch Hills</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Brandon</td>
<td>New site</td>
<td>↓</td>
</tr>
</tbody>
</table>

Showing 1 to 7 of 60 entries

Search:

<table>
<thead>
<tr>
<th>Site</th>
<th>Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberton</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Assiniboia</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Bathurst</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Battery Point</td>
<td>New site</td>
<td>↑</td>
</tr>
<tr>
<td>Battleford</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Birch Hills</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Brandon</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Bridgewater</td>
<td>New site</td>
<td>↑</td>
</tr>
<tr>
<td>Campbellton</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Canora</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>Central Colchester</td>
<td>New site</td>
<td>↓</td>
</tr>
<tr>
<td>City of Charlottetown & Town of Stratford</td>
<td>New site</td>
<td>↓</td>
</tr>
</tbody>
</table>
This information is based on sewage samples submitted for testing to the National Microbiology Laboratory or a participating partner laboratory. The National Microbiology Laboratory conducts testing for over 70 sites across Canada, with partner laboratories conducting testing for a number of additional sites. Data from 60 sites are included on this dashboard. Site selection and the decision to publish results on the dashboard is always at the discretion of provinces, territories, and municipalities.

For the signal level metric, sites are marked as 'new' if they started testing after December 1, 2021. The data for these sites doesn't cover the entire post-Omicron period, which is the data we normally use to establish cutoff values. Consequently, new sites may underestimate the viral peak of the pandemic.

Interpreting wastewater data

The wastewater dashboard shows the concentration of COVID-19 in wastewater samples from different sites.

The solid green line shows the 7-day rolling average of the viral load for each site. We calculate the 7-day rolling average by averaging the viral loads from each sampling event with the previous 6 sampling events. A dotted green line that shows the daily viral load can be added by using the 'show daily values' button. This shows the current trend of the COVID-19 signals and the current signal level compared to previous levels for each site.

Use caution when interpreting daily and short-term changes in viral load, as the wastewater signal can change from day to day. An ongoing increase or decrease in the viral load is more reliable for indicating trends.
If the wastewater signals are high or increasing, this may indicate a high level of COVID-19 in your community. It's important to pay attention to public health alerts and to follow public health advice. Consider the risks and make informed decisions about individual public health measures. Even if they're no longer required in your community or setting, individual public health measures can help reduce the spread of COVID-19.

Figure 2. Trend graph of 7-day rolling average of COVID-19 viral load in wastewater, as of September 25, 2023

<table>
<thead>
<tr>
<th>Location</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberton, Prince Edward Island</td>
<td>Viral load is currently showing no change</td>
</tr>
<tr>
<td>Assiniboia, Saskatchewan</td>
<td>Viral load is currently showing no change</td>
</tr>
<tr>
<td>Bathurst, New Brunswick</td>
<td>Viral load is currently showing no change</td>
</tr>
<tr>
<td>Battery Point, Nova Scotia</td>
<td>Viral load is currently increasing</td>
</tr>
</tbody>
</table>
Battleford, Saskatchewan
- Viral load is currently (as of October 3, 2023) showing no change

Birch Hills, Saskatchewan
- Viral load is currently (as of October 3, 2023) showing no change

Brandon, Manitoba
- Viral load is currently (as of October 3, 2023) showing no change

Bridgewater, Nova Scotia
- Viral load is currently (as of October 3, 2023) increasing

Campbellton, New Brunswick
- Viral load is currently (as of October 3, 2023) showing no change

Canora, Saskatchewan
- Viral load is currently (as of October 3, 2023) showing no change
Central Colchester, Nova Scotia
- Viral load is currently showing no change

City of Charlottetown & Town of Stratford, Prince Edward Island
- Viral load is currently showing no change

Dominion-Bridgeport, Nova Scotia
- Viral load is currently decreasing

Edmonton Goldbar, Alberta
- Viral load is currently low and showing no change
Edmundston, New Brunswick
- Viral load is currently (as of October 3, 2023) increasing over time.

Estevan, Saskatchewan
- Viral load is currently (as of October 3, 2023) showing no change over time.

Fredericton, New Brunswick
- Viral load is currently (as of October 3, 2023) showing no change over time.

Haines Junction, Yukon
- Viral load is currently (as of October 3, 2023) increasing over time.

Halifax Dartmouth, Nova Scotia
- Viral load is currently (as of October 3, 2023) low and showing no change over time.

Halifax Halifax, Nova Scotia
- Viral load is currently (as of October 3, 2023) low and increasing over time.
Halifax Millcove, Nova Scotia
Viral load is currently (as of October 3, 2023) low and increasing.

Île-à-la-Crosse, Saskatchewan
Viral load is currently (as of October 3, 2023) showing no change.

La Ronge, Saskatchewan
Viral load is currently (as of October 3, 2023) showing no change.

Lumsden, Saskatchewan
Viral load is currently (as of October 3, 2023) increasing.
Meadow Lake, Saskatchewan

Viral load is currently (as of October 3, 2023) showing no change.

Melville, Saskatchewan

Viral load is currently (as of October 3, 2023) showing no change.

Miramichi, New Brunswick

Viral load is currently (as of October 3, 2023) showing no change.

Moncton, New Brunswick

Viral load is currently (as of October 3, 2023) showing no change.

Montague, Prince Edward Island

Viral load is currently (as of October 3, 2023) increasing.

Montreal North, Quebec

Viral load is currently (as of October 3, 2023) high and showing no change.
Viral load is currently (as of October 3, 2023) moderate and showing no change.

Montreal South, Quebec

Viral load is currently (as of October 3, 2023) increasing.

Moose Jaw, Saskatchewan

Viral load is currently (as of October 3, 2023) low and increasing.

North Battleford, Saskatchewan

Viral load is currently (as of October 3, 2023) showing no change.

Pasqua, Saskatchewan

Viral load is currently (as of October 3, 2023) showing no change.

Prince Albert, Saskatchewan

Regina, Saskatchewan
Viral load is currently (as of October 3, 2023)

- Low and showing no change
- Low and increasing
- Increasing
- Moderate and increasing
- Showing no change
- Showing no change
St. John's, Newfoundland
Viral load is currently (as of October 3, 2023) moderate and showing no change.

Summerside, Prince Edward Island
Viral load is currently (as of October 3, 2023) showing no change.

Swift Current, Saskatchewan
Viral load is currently (as of October 3, 2023) showing no change.

Toronto Ashbridges Bay, Ontario
Viral load is currently (as of October 3, 2023) low and decreasing.

Toronto Highland Creek, Ontario
Viral load is currently (as of October 3, 2023) moderate and increasing.

Toronto Humber, Ontario
Viral load is currently (as of October 3, 2023) moderate and increasing.
Toronto North Toronto, Ontario
- Viral load is currently (as of October 3, 2023) low and increasing

Trenton, Nova Scotia
- Viral load is currently (as of October 3, 2023) increasing

Unity, Saskatchewan
- Viral load is currently (as of October 3, 2023) showing no change

Vancouver Annacis Island, British Columbia
- Viral load is currently (as of October 3, 2023) low and increasing
Vancouver Iona Island, British Columbia
- Viral load is currently (as of October 3, 2023) low and showing no change.

Vancouver Lions Gate, British Columbia
- Viral load is currently (as of October 3, 2023) low and showing no change.

Vancouver Lulu Island, British Columbia
- Viral load is currently (as of October 3, 2023) moderate and increasing.

Vancouver Northwest Langley, British Columbia
- Viral load is currently (as of October 3, 2023) low and increasing.

Weyburn, Saskatchewan
- Viral load is currently (as of October 3, 2023) showing no change.

Winnipeg North End, Manitoba
- Viral load is currently (as of October 3, 2023) low and showing no change.
Viral load is currently (as of October 3, 2023) showing no change.

Winnipeg South End, Manitoba
Viral load is currently (as of October 3, 2023) moderate and increasing.

Winnipeg West End, Manitoba
Viral load is currently (as of October 3, 2023) moderate and increasing.

Yarmouth, Nova Scotia
Viral load is currently (as of October 3, 2023) increasing.

Yorkton, Saskatchewan
Viral load is currently (as of October 3, 2023) increasing.
7-day rolling average of COVID-19 viral load in wastewater, as of September 25, 2023

<table>
<thead>
<tr>
<th>Date</th>
<th>Site</th>
<th>7-day rolling average of COVID-19 viral load (copies/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-10-29</td>
<td>Montreal North</td>
<td>4</td>
</tr>
<tr>
<td>2020-11-01</td>
<td>Montreal North</td>
<td>8</td>
</tr>
<tr>
<td>2020-11-05</td>
<td>Montreal North</td>
<td>9</td>
</tr>
<tr>
<td>2020-11-05</td>
<td>Toronto Humber</td>
<td>49</td>
</tr>
<tr>
<td>2020-11-06</td>
<td>Vancouver Annacis Island</td>
<td>16</td>
</tr>
<tr>
<td>2020-11-08</td>
<td>Montreal North</td>
<td>11</td>
</tr>
<tr>
<td>2020-11-08</td>
<td>Vancouver Annacis Island</td>
<td>16</td>
</tr>
<tr>
<td>2020-11-09</td>
<td>Toronto Humber</td>
<td>56</td>
</tr>
<tr>
<td>2020-11-12</td>
<td>Halifax Dartmouth</td>
<td>3</td>
</tr>
<tr>
<td>2020-11-12</td>
<td>Montreal North</td>
<td>25</td>
</tr>
</tbody>
</table>
Canadian wastewater COVID-19 monitoring dashboards and websites

These dashboards and websites are led by provincial, territorial and academic partners across Canada.

For corrections or additions, please contact: nmlwastewater@phac-aspc.gc.ca.

<table>
<thead>
<tr>
<th>Region</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberta</td>
<td>Centre for Health Informatics Dashboard</td>
</tr>
<tr>
<td>British Columbia</td>
<td>Metro Vancouver COVID-19 Wastewater Dashboard</td>
</tr>
<tr>
<td>British Columbia</td>
<td>Provincial Health Services Authority Wastewater Monitoring</td>
</tr>
<tr>
<td>Newfoundland and Labrador</td>
<td>Newfoundland and Labrador Wastewater Monitoring Report</td>
</tr>
<tr>
<td>Northwest Territories</td>
<td>Wastewater Monitoring in the Northwest Territories</td>
</tr>
<tr>
<td>Ontario</td>
<td>Public Health Ontario Wastewater Monitoring Dashboard</td>
</tr>
<tr>
<td>Ontario</td>
<td>Algoma Public Health Unit Dashboard</td>
</tr>
<tr>
<td>Ontario</td>
<td>Brant County Health Unit Dashboard</td>
</tr>
<tr>
<td>Ontario</td>
<td>City of Greater Sudbury Dashboard</td>
</tr>
<tr>
<td>Ontario</td>
<td>Durham Region COVID-19 Wastewater Monitoring</td>
</tr>
</tbody>
</table>
COVID-19: Wastewater monitoring dashboard

This dashboard provides trend data about the levels of COVID-19 in the wastewater (sewage) of different communities and settings across Canada. This can reflect the levels of COVID-19 in those communities.

Last updated: 2023-09-19 📄 PDF

About the dashboard

Wastewater dashboard

Technical notes

This page has information about how we conduct wastewater testing and the limitations of the data. It also includes definitions for some of the scientific terms used in this dashboard.

On this page

- Methodology
- Limitations
- Definitions

Methodology

Scientists across the country provide wastewater monitoring data through their provincial and territorial networks. To detect SARS-CoV-2 at the community or institutional level, samples are collected at a central collection point, such as a wastewater treatment plant or pumping station. This method only captures the presence of COVID-19 in the community or institution. It can't be used to identify single cases or households.

Scientists are still learning about how to detect and measure COVID-19 in wastewater. While there are different ways of doing this, the scientific community, including the Public Health Agency of Canada, is working together to build a standard that will help everyone understand, compare and share data about COVID-19 in wastewater.
We’ve compared the trends of wastewater signals when the same sites are tested by both the National Microbiology Laboratory and provincial and territorial networks. We found that the trends are broadly consistent across labs. Differences in the strength of the wastewater signals are mostly due to differences in processing methods.

We present COVID-19 viral load as a 7-day rolling average because high levels on a single day don’t show the broader trend. Our approach helps us to understand the overall trends while giving you better information to make your own health decisions. Generally, we test sites twice weekly. Exceptions are Alberton and Winnipeg which are tested 1 and 5 times per week, respectively.

We monitor the rise and fall of COVID-19 signals using a technique developed by the Ontario Ministry of the Environment, Conservation and Parks as a part of their provincial wastewater monitoring initiative. The wastewater monitoring 7-day average data is broken into segments over time. The daily change in the viral signal is determined for each segment. Rises and falls of the wastewater signal are judged based on their consistency over time.

For more information, please refer to: Quantitative Trend Analysis of SARS-CoV-2 RNA in Municipal Wastewater Exemplified with Sewershed-Specific COVID-19 Clinical Case Counts.

To provide additional context to COVID-19 signals, we have developed a signal level metric to compare recent COVID-19 levels to historical levels. For each sampling location, we use SARS-CoV-2 levels from all samples collected since December 1, 2021, to calculate the 25th and 75th percentiles and establish lower and upper cutoff values. For newly onboarded sites, we use historical data from similar sites to estimate thresholds. Values below the 25th percentile are classified as low, values above the 75th percentile are classified as high, and values between the two thresholds are classified as medium. Sites are marked as ‘New Site’ if the wastewater testing was established after December 1, 2021 and historical data for the complete post-Omicron period does not exist to establish cutoff values.

At least 10 samples are required to calculate the SARS-CoV-2 trend and level metrics. A site is marked as ‘New Site’ if fewer than 10 samples are reported.

Limitations
While wastewater monitoring offers many advantages, it does have some limitations.

The accuracy of the wastewater signal can be affected by various factors, including the composition of wastewater, which varies by community. For example, ground or surface water can make the COVID-19 wastewater signal stronger or weaker. This can be an issue during seasonal snow-melt and large rain events.

The wastewater signal can also be affected by:

- industrial flow into the sewage system
- sand and salt to roads in winter, and
- the temperature of the collection system

We’re working with our partners to identify other issues with wastewater monitoring and developing measures to reduce the effects.

Wastewater monitoring also detects people with or without symptoms. Considering the above limitations, we’re not sure how much virus is shed with each wave. For this reason we don’t recommend comparing wastewater monitoring data from different waves of COVID-19 to estimate the number of cases in a community.

Definitions

- The **7-day average** is generated by averaging the levels from a given day with the 6 previous days. The average is termed “rolling” as it changes each day.
- **Copies per mL** is the number of copies of the target RNA found in a milliliter (mL) of raw sewage by the specific wastewater treatment facility.
- **Viral load** is the concentration of SARS-CoV-2 genetic material present in a sample of wastewater. We present this in the dashboard as copies of SARS-CoV-2 genetic material per milliliter (mL) of wastewater.
- **Wastewater signal** is a measure of the level of virus in wastewater that identifies increasing, stable or decreasing number of virus particles in wastewater.
- **25th percentile** is also called the first quartile. 25% of the data falls below this level.
- **75th percentile** is also called the third quartile. 75% of the data falls below this level.

To learn more about wastewater monitoring, please refer to [Harnessing the power of wastewater testing to detect COVID-19 outbreaks](#).
Data changes

<table>
<thead>
<tr>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023-05-02</td>
<td>We have temporarily removed Saint John from the dashboard, due to possible issues affecting data accuracy. Once these issues have been investigated and resolved, Saint John will once again be included in the dashboard.</td>
</tr>
<tr>
<td>2023-05-12</td>
<td>In January 2023, The National Microbiology Laboratory (NML) updated its protocol to include quantification of standard reference samples to improve accuracy. This change affects data points between July 6, 2022 and February 3, 2023. Data points have been retroactively updated to reflect this change. The updated NML wastewater quantification protocol includes a confirmation of standard reference samples’ concentration via digital PCR.</td>
</tr>
<tr>
<td>2023-09-08</td>
<td>Saint John, New Brunswick, has been reincluded in the dashboard with data originating from Dr. Georges-L.-Dumont University Laboratory.</td>
</tr>
</tbody>
</table>

Date modified:
2023-08-03